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Quantum rings can be characterized by a specific radius and ring width. For this rich class of physical
systems, an accurate approximation for the exchange-hole potential and thus for the exchange energy is derived
from first principles. Excellent agreement with the exact-exchange results is obtained regardless of the ring
parameters, total spin, current, or the external magnetic field. The description can be applied as a density
functional outperforming the commonly used local spin-density approximation, which is here explicitly shown
to break down in the quasi-one-dimensional limit. The dimensional crossover, which is of extraordinary
importance in low-dimensional systems, is fully captured by our functional.
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Ring-shaped quantum systems such as semiconductor
quantum rings �QRs� have attracted wide interest both theo-
retically and experimentally. Presently, QRs can be fabri-
cated using a variety of techniques.1–3 The tunabilities of
size, shape, and electron number in QRs suggest applications
in the field of quantum-information technology. In particular,
one can exploit the well-known Aharonov-Bohm effect4 by
external magnetic fields5 or control the electronic states by
short laser pulses within the decoherence time.6

Many-electron QRs have been studied theoretically using
various approaches, e.g., model Hamiltonians,7,8 exact
diagonalization,9,10 quantum Monte Carlo,10,11 and density-
functional theory �DFT� �Refs. 12–14�. Within spin-DFT
�SDFT� or current-SDFT applied to QRs, the exchange and
correlation energies and potentials are commonly calculated
using the two-dimensional �2D� local spin-density approxi-
mation �LSDA� �Ref. 15�. For relatively wide QRs, LSDA
performs reasonably well,12–14 which is not surprising in
view of the good performance of the LSDA in the case of 2D
quantum dots.16 However, in the quasi-one-dimensional
�quasi-1D� limit the 2D-LSDA is expected to fail similarly to
the breakdown of the three-dimensional LSDA in the
quasi-2D limit.17 Hence, in order to benefit from the effi-
ciency of DFT methods in various QRs, accurate density
functionals for exchange and correlation are needed. Meth-
ods based on exact-exchange �EXX� functional seem an at-
tractive possibility.18 However, most computational schemes
exploiting EXX for finite systems suffer from numerical
problems,18,19 which, ultimately, prevents the method from
being applied to large electron numbers.

In this Rapid Communication we derive an accurate
method to calculate the exchange-hole potential and the ex-
change energy of QRs. The resulting density functional is
simpler than EXX but yet compatible with correlation func-
tionals based on the modeling of the correlation hole.20 Our
derivation follows the strategy originally proposed for atoms
by Becke and Roussel,21 in which the averaged exchange
hole of a suitable single-electron wave function is adapted to
a general N-electron system by examining the short-range
behavior of the exchange hole. Recently, a similar approach
has been used to develop exchange functionals for finite 2D
systems,22 which can be reproduced as a special case of this

work. In the numerical examples we demonstrate the accu-
racy of the functional against EXX results and underline the
considerable improvement over the LSDA, particularly in
the quasi-1D limit.

In the framework of SDFT the exact exchange-energy
functional of the spin densities �↑�r� and �↓�r� can be written
in effective atomic units23 �eff. a.u.� as

Ex��↑,�↓� = −
1

2 �
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� dr1� dr2
���r1�

�r1 − r2�
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is the exchange-hole function. Here we assume that the non-
interacting ground state is nondegenerate and hence takes the
form of a single Slater determinant constructed from the
Kohn-Sham �KS� orbitals, �k,�.

Next we look for an approximation for the cylindrical
average of the exchange hole. It is defined around r1 with
respect to s=r2−r1 as22

h̄x
��r1,s� =

1

2�
�

0

2�

d�shx
��r1,r1 + s� . �3�

In the following, we compute h̄x
� exactly for a single-electron

wave function of a QR. We consider a 2D QR defined by a
radial confining potential of the form24

V�r� =
M2

2r2 +
�4

2
r2 − M�2, �4�

where M �0 and ��0 are constants. Note that M =0 corre-
sponds to a harmonic quantum dot.16 Regarding QR
fabrication,1–3 the confinement given above is realistic: on
one hand, the electrons cannot enter the center area described
by the strongly peaked “antidot” �first term in V�r�� and on
the other hand, the edge of the QR is described by a soft
parabolic confinement �second term in V�r��. In this tunable
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model, both the radius and width of the QR can be changed
independently by varying M and � �see below�.

The eigenfunctions and eigenvalues for a single-electron
confined by V�r� in Eq. �4� can be solved analytically.24 Set-
ting the radial and angular quantum numbers to zero yields a
wave function,

���r� =
�M+1

	�M!
rMe−�2r2/2. �5�

We emphasize that this expression, normalized for each �
and M, is the general single-electron ground-state wave
function of a QR having a potential minimum at r=r0
=	M /�, which corresponds to the ring radius. The width of
the single-electron QR having the energy E0=�2 can be ap-
proximated by 	r=	2 /�. In Fig. 1 we show explicitly the
relation between the single-electron radius and width of the
QR �r0 ,	r� and the parameters �M ,�� in the external con-
fining potential given in Eq. �4�.

The exact exchange-hole function for the single-electron
wave function in Eq. �5� becomes

hx,1
� �r1,r2� = ��

��r2����r2� = ���r2� =
�2�M+1�

�M!
r2

2Me−�2r2
2
.

�6�

To calculate the cylindrical average as defined in Eq. �3�, we
first set r1=r and r2=r+s. As a result we get

h̄x,1
� �r,s� =
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where I0�z� is the zeroth-order modified Bessel function of

the first kind and M is now an integer �see below�.
Next, we apply h̄x,1

� as a general model for the averaged
exchange hole of an N-electron system.21,22 The model is
required to locally reproduce the short-range behavior of the
exchange hole. Therefore, we parametrize �2 and r2 into
functions of r by setting �2→a�r� and r2→b�r�. Equation
�7� can now be rewritten as

h̄x
��a,b;s� =

aM�+1

�M�!
e−a�b+s2��b + s2�M��

k=0

M�

�− 1�k
M�

k
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 2	bs
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dzkI0�z��z=2a	bs, �8�

where M�=2�	r� /r0
��−2 is the nearest integer describing the

characteristic ratio between the effective width and the radius
of the N-electron QR. As we will show below, r0

� and 	r� can
be extracted from the spin density. As a consequence, M� can
be considered as a �spin� density functional M�����. The
short-range behavior of the exact exchange hole with respect
to s can be obtained from the first two nonvanishing terms in
the Taylor expansion in Eq. �3�:

h̄x
��r,s� = ���r� + s2Cx

��r� + . . . , �9�

where
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��

 �10�

is the local curvature of the exchange hole in 2D �Ref. 22�
around the given reference point r �argument omitted�. Here
the �double of the� kinetic-energy density, ��=�k=1

N� ���k,��2,
and the spin-dependent paramagnetic current density, jp,�

= 1
2i�k=1

N� ��k,�
� ���k,��− ���k,�

� ��k,��, depend explicitly on the
KS orbitals and hence implicitly on the spin densities. De-
fining y�r�ªa�r�b�r�, the zeroth-order term in Eq. �9� yields

�� =
a

�M�!
yM�

e−y , �11�

and the second-order term gives

Cx
� =

a2

�M�!
yM�−1��y − M��2 − y�e−y . �12�

Combining Eqs. �11� and �12� leads to

M� ! y−�M�+1���y − M��2 − y�ey =
Cx

�

���
2 , �13�

from which y can be solved numerically. Now, we can com-
pute a and b and thus the averaged exchange hole from Eq.
�8�. The exchange-hole potential is given by

Ux
��r� = − 2��

0

�

dsh̄x
��a,b;s� , �14�

from which the exchange energy can be calculated as
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FIG. 1. �Color online� Relation between the parameter set
�� ,M� in the external confining potential �Eq. �4�� and the single-
electron ring radius r0 and width 	r �see the inset�. The curves
correspond to fixed values of M.
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Ex��↑,�↓� =
1

2�
�
� dr���r�Ux

��r� . �15�

From Eqs. �8� and �14� it can be shown that our calculation
scheme preserves also the exact long-range behavior: Ux

��r
→��→−1 /r.

To summarize our method, the calculation of the ex-
change energy of an N-electron QR consists of the following
steps.

�1� Use the KS orbitals �k,� to calculate the spin densities
��, the local curvature of the exchange hole Cx

� from Eq.
�10�, and to estimate M�.

�2� Compute y�r� numerically from Eq. �13�.
�3� Calculate a�r� from Eq. �11� and b�r� from the relation

b�r�=y�r� /a�r�.
�4� Calculate the averaged exchange-hole function from

Eq. �8�.
�5� Finally calculate the exchange-hole potential and the

exchange energy from Eqs. �14� and �15�, respectively.
Next we test the performance of our functional in a few

examples. As the reference results we use the exchange-hole
potentials and exchange energies of the EXX calculations
within the rather accurate Krieger-Li-Iafrate �KLI�
approximation.25 We compare the results also to the 2D-
LSDA exchange.26 Both the EXX and LSDA results are ob-
tained using the OCTOPUS code.27 The converged EXX orbit-
als are used as the input KS orbitals in our functional �and in
the LSDA�. Alternatively, also the LSDA orbitals can be

used as input, which in most cases lead to only minor
changes in the results.

Figure 2 shows the exchange-hole potentials for two-
electron singlet states of two QRs defined by �a� �M ,��
= �1,0.5� and �b� �M ,��= �9,3�, respectively. Note that here
we have set M�=M as the first approximation. In both cases
we find excellent agreement between the EXX �dashed lines�
and the present work �solid lines�. Both the large-r limit,
where Ux

� decays as −1 /r, and the r→0 limit are correctly
reproduced.

The exchange energies per particle of the LSDA �dotted
lines in Fig. 2�, which are directly comparable to Ux

�, deviate
significantly from the EXX and from our approximation. The
inability of the LSDA to yield the correct shape of the curve
is due to the simple density-dependent expression of the ex-
change energy per particle in the LSDA, i.e., 
x,�

LSDA���
1/2,

leading to differences also in the exchange energy. In
the case of Fig. 2�a�, we find Ex

LSDA=−0.389, whereas
Ex

EXX=−0.409 and Ex
present=−0.408. When the ratio 	r /r0 is

decreased to one third, i.e., M =1→9, the deviation of the
LSDA becomes more pronounced as shown in Fig. 2�b�.
Now we find Ex

LSDA=−1.502 vs Ex
EXX=Ex

present=−1.300. In
other words, the above change in M increases the relative
error of the LSDA exchange energy from 5 to 16%. Hence,
these results demonstrate the breakdown of the 2D-LSDA in
the quasi-one-dimensional limit.

At this point we make two remarks on the numerical pro-
cedure. First, Eq. �13� has two solutions for y�r�, from which
we choose the smaller one for r�r��max� and the larger one
otherwise. Since these two solutions do not generally coin-
cide at r=r��max�, we extrapolate Ux

��r� around this point as
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FIG. 2. �Color online� Exchange-hole potentials of two-electron
quantum rings �total spin S=0� defined by parameters �a� M =1,
�=0.5, and �b� M =9, �=3. The dashed line shows the EXX result,
the solid line is the result of the present work, and the dotted line
corresponds to the LSDA result.
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FIG. 3. �Color online� Same as in Fig. 2 but for �a� a fully
spin-polarized current-carrying six-electron quantum ring at B
=6 T and for �b� a zero-current 12-electron quantum ring.
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visualized in the inset of Fig. 2. This smoothing procedure is
done such that Ex is not altered. Second, the application of
the overall scheme might be numerically cumbersome in the
small-r regime when M �and/or M�� is large and the density
is very small. To overcome this problem, we take the advan-
tage of the exact property of our model, Ux

��r→0�=
−�2M� ! �M!�−22−2M�	�+O�r2�, which is valid for a general
N-electron case with M �1.

To demonstrate the generality of our method, we show in
Fig. 3 the exchange-hole potentials for �a� a spin-polarized
current-carrying six-electron QR at B=6 T and for �b� a
12-electron QR. Similarly to the previous examples, we find
excellent agreement with the EXX. The six-electron case
yields Ex

EXX=−2.226, Ex
present=−2.238, and Ex

LSDA=−2.114.
In the case of 12 electrons, we plot results for both M�=M
=3 and for M����=2�2�	r� /r0

��−2, where the effective ra-
dius r0

� corresponds to the point where the cumulative density
reaches 50%, and the effective width 	r�, centered at r0

�,
covers 90% of the total density. We find that in the latter case
the agreement with the EXX is better.

To conclude, we have derived, from first principles, an
accurate and general approximation for the exchange-hole
potential and hence for the exchange energy in quantum
rings. Excellent agreement with the exact-exchange results is
obtained regardless of the ring geometry, number of elec-
trons, spin polarization, and currents. Moreover, we have
demonstrated that, in contrast to the local-density approxi-
mation, our functional can deal with the physically relevant
dimensional crossover between two and one dimensions. Our
approach is suitable for the development of correlation func-
tionals by considering the exact properties of the correspond-
ing correlation-hole potentials.20
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